If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+19-10x=180
We move all terms to the left:
10x^2+19-10x-(180)=0
We add all the numbers together, and all the variables
10x^2-10x-161=0
a = 10; b = -10; c = -161;
Δ = b2-4ac
Δ = -102-4·10·(-161)
Δ = 6540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6540}=\sqrt{4*1635}=\sqrt{4}*\sqrt{1635}=2\sqrt{1635}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{1635}}{2*10}=\frac{10-2\sqrt{1635}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{1635}}{2*10}=\frac{10+2\sqrt{1635}}{20} $
| 8x+17=x+87 | | 100=5(k+9) | | -2(x+4)+10x=-16 | | 2n-3=13+6n | | -4-5x=-8-6x | | 3(x-1)-8=4(1+x)=+5 | | 4(x-3)+6=4x-5 | | 39=13z | | 9)-5x-9=-153+7x | | -4(4n+3.5=) | | 5x+8x=11+2x | | -6g-4=3g-20-7g | | 8(j-82)=80 | | 31/4+4=5p | | 2(x-6)+5=2x-7 | | 16=4(u-80) | | -42-8x=-24-2x | | 2+4p=p+17 | | 3b+7=2b+17 | | 8(w+52)=96 | | (20p-8)=32 | | 4x-10=6x-24 | | 9(x3)=2x+83 | | 4p+7=-8 | | (4y+8)=-24 | | 180-125+4x=180 | | 90=6(b+7) | | 2=v/4-3 | | (10x^2)=(19-10x) | | 180-125+4x=0 | | 31-p=419 | | 10(j+7)=90 |